Risk Averse Motion Planning for a Mobile Robot
نویسندگان
چکیده
Here we consider a pragmatic sample-based motion planning approach for a robot operating in a fixed, rangeonly beacon field. We define and calculate entropy values for regions of interest and provide a method for finding “safe,” risk averse, low-entropy paths between these regions. We include an experimental, real-world assessment of the approach.
منابع مشابه
Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملPlanning Robot Motion in a 2-D Region with Unknown Obstacles
The purpose of this paper is to present several algorithms for planning the motion of a robot in a two-dimensional region having obstacles whose shapes and locations are unknown. The convergence and efficiency of the algorithms are discussed and upper bounds for the lengths of paths generated by the different algorithms are derived and compared.
متن کامل